Solicita Información

Elija una provincia en caso de que su país sea España.
  • Barcelona
  • Madrid
  • Valencia
  • On line
  • Telepresencia

Curso Superior en Big Data para la Dirección de Empresas y el Marketing

Más información aquí sobre cada una de nuestras modalidades: presencial, online y telepresencial.

Presentación y Objetivos

Según el “Estudio de Perfiles Profesionales y Competencias más demandados en la Empresa”, elaborado por la Asociación Española de Recursos Humanos, los puestos más difíciles de cubrir en España son los de especialista en big data. Según otro estudio de la consultora Forrester, para el año 2020 el 90 % de las empresas habrán adoptado el big data como parte de sus estrategias. Ante este nuevo ecosistema, el Curso Superior en Big Data para la Dirección de Empresas y el Marketing forma a profesionales de las distintas áreas de decisión de la empresa para tomar las decisiones estratégicas correctas basadas en el manejo de los datos.

En los últimos tiempos el término big data se ha puesto de moda. En todos los telediarios se habla de las magníficas oportunidades que el big data va a traer al mundo de la empresa. Pero, ¿sabemos bien qué es el big data?, ¿cómo podemos utilizarlo en nuestras empresas?, ¿qué conocimientos se requieren para poder trabajar el big data con garantías?, ¿qué perfiles han de conocer y trabajar el big data?

El conocimiento de la información de la empresa y el manejo de datos no es solo aplicable a los perfiles técnicos, sino que los ejecutivos del siglo XXI han de aprender, necesariamente, a manejarse con los nuevos sistemas de información.

Dirigido a

Profesionales y directivos que quieran completar su nivel de conocimientos, su grado de experiencia y su red de contactos con el desarrollo de un programa formativo útil y práctico, y que deseen estar al tanto de las últimas tecnologías para la toma de decisiones de la empresa.

Requisitos

No se necesitan conocimientos técnicos previos, puesto que se parte de un nivel inicial de conocimientos, no obstante, para realizar este programa es recomendable haber cursado estudios universitarios relacionados con el mundo empresarial o del marketing, o bien disponer de experiencia profesional en puestos de trabajo en los que el componente analítico tenga un papel destacado.

Objetivos generales

El objetivo global es que el alumno aumente su valor en el mercado de trabajo mediante el crecimiento de sus competencias de análisis de datos, convirtiéndose en un profesional capaz de convertir la ingente cantidad de datos con los que cuenta una empresa en la actualidad en conocimiento para la toma de decisiones.

Objetivos específicos o competenciales

  • Comprender el concepto de big data y los nuevos sistemas de información.
  • Ser capaz de realizar el machine learning para los distintos análisis de información, tanto descriptivos como predictivos.
  • Trabajar mediante talleres ejemplos de aplicación práctica del big data dentro de la toma de decisiones en la dirección de empresas y en el marketing.
  • Desarrollar las competencias tecnológicas y de gestión de información en la empresa.
  • Aprender sobre inteligencia artificial y el internet de las cosas como elementos decisores en las empresas.

Según el “Estudio de Perfiles Profesionales y Competencias más demandados en la Empresa”, elaborado por la Asociación Española de Recursos Humanos, los puestos más difíciles de cubrir en España son los de especialista en big data. Según otro estudio de la consultora Forrester, para el año 2020 el 90 % de las empresas habrán adoptado el big data como parte de sus estrategias. Ante este nuevo ecosistema, el Curso Superior en Big Data para la Dirección de Empresas y el Marketing forma a profesionales de las distintas áreas de decisión de la empresa para tomar las decisiones estratégicas correctas basadas en el manejo de los datos.

En los últimos tiempos el término big data se ha puesto de moda. En todos los telediarios se habla de las magníficas oportunidades que el big data va a traer al mundo de la empresa. Pero, ¿sabemos bien qué es el big data?, ¿cómo podemos utilizarlo en nuestras empresas?, ¿qué conocimientos se requieren para poder trabajar el big data con garantías?, ¿qué perfiles han de conocer y trabajar el big data?

El conocimiento de la información de la empresa y el manejo de datos no es solo aplicable a los perfiles técnicos, sino que los ejecutivos del siglo XXI han de aprender, necesariamente, a manejarse con los nuevos sistemas de información.

Dirigido a

Profesionales y directivos que quieran completar su nivel de conocimientos, su grado de experiencia y su red de contactos con el desarrollo de un programa formativo útil y práctico, y que deseen estar al tanto de las últimas tecnologías para la toma de decisiones de la empresa.

Requisitos

No se necesitan conocimientos técnicos previos, puesto que se parte de un nivel inicial de conocimientos, no obstante, para realizar este programa es recomendable haber cursado estudios universitarios relacionados con el mundo empresarial o del marketing, o bien disponer de experiencia profesional en puestos de trabajo en los que el componente analítico tenga un papel destacado.

Objetivos generales

El objetivo global es que el alumno aumente su valor en el mercado de trabajo mediante el crecimiento de sus competencias de análisis de datos, convirtiéndose en un profesional capaz de convertir la ingente cantidad de datos con los que cuenta una empresa en la actualidad en conocimiento para la toma de decisiones.

Objetivos específicos o competenciales

  • Comprender el concepto de big data y los nuevos sistemas de información.
  • Ser capaz de realizar el machine learning para los distintos análisis de información, tanto descriptivos como predictivos.
  • Trabajar mediante talleres ejemplos de aplicación práctica del big data dentro de la toma de decisiones en la dirección de empresas y en el marketing.
  • Desarrollar las competencias tecnológicas y de gestión de información en la empresa.
  • Aprender sobre inteligencia artificial y el internet de las cosas como elementos decisores en las empresas.
  • Programa

    1. Conocimientos básicos (24 horas)

    • Visión general sistemas de información y transformación digital (3 horas)
      Es esta sesión se dará una visión general del ecosistema de los sistemas de información, desde las aplicaciones de gestión como ERP o CRM, hasta los sistemas de big data y el uso de la inteligencia artificial en el marco de la transformación digital de las empresas.
    • Entorno de trabajo (3 horas)
      Para poder sacarle todo el potencial a los datos y transformarlos en información útil, los alumnos deben familiarizarse con las herramientas de su entorno de trabajo: herramientas de visualización, de análisis, lenguajes de programación básicos, máquinas virtuales, etc.
    • Fuentes de datos en el big data (9 horas)
      Para entender el big data hay que comprender las diferencias entre las distintas fuentes de datos, que van desde las bases de datos relacionales, a la información en las redes sociales, pasando por los datos transaccionales. En esta sesión los alumnos aprenderán a conectarse a estas fuentes de información desde el entorno de este curso: Microsoft Learning Studio en su versión Free Workspace.
    • Procesamiento de datos en el big data (9 horas)
      El procesamiento de datos ha sufrido una gran transformación en los últimos años, en los que se ha pasado de los sistemas propietarios a los entornos cloud. En estas sesiones los alumnos aprenderán a crear sistemas cloud de forma sencilla, haciendo hincapié en los sistemas de big data en cloud que permiten el proceso de grandes volúmenes de información a gran velocidad.

    2. Análisis descriptivo (15 horas)

    • Visualización (9 horas)
      Ser capaces de mostrar la información de forma idónea es crítico para poder transmitir de manera correcta y entendible las conclusiones que obtenemos de ella. Para ello, utilizaremos herramientas como Excel o Power BI. De esta manera seremos capaces de realizar un análisis descriptivo de la información tras procesar los datos.
    • Machine learning. Análisis de tendencias de mercado (3 horas)
      Comenzaremos a utilizar algoritmos de machine learning, que nos permiten realizar análisis básicos de tendencias, mediante la utilización de regresiones.
    • Machine learning. Agrupación de clientes por clusterización (3 horas)
      Ser capaces de identificar agrupaciones de clientes por características comunes en el conjunto de datos nos permitirá personalizar los productos y servicios y, por tanto, lograr mejores resultados en nuestra compañía.

    3. Taller de marketing y ventas (6 horas)

    Este taller repasará de forma práctica los conocimientos adquiridos con un ejemplo que agrupará a los clientes por sus características económicas y permitirá realizar un análisis de la proyección futura de ventas.

    4. Diagnóstico (9 horas)

    • Machine learning. Detección de anomalías en los datos (3 horas)
      Nos introduciremos en las técnicas de Support Vector Machine o Principal Component Analisys, que permiten la detección de anomalías en las series de datos, lo que nos permitirá anticiparnos a posibles problemas en la empresa.
    • Taller de churn rate. Prevención de la caída de clientes (6 horas)
      El churn rate es la tasa de abandono de clientes. Aprenderemos a prever la posible caída de los clientes para poder aplicar acciones destinadas a evitarlo.

    5. Análisis predictivo. (6 horas)

    • Machine learning. Clasificación. Árboles de tomas de decisión (3 horas)
      Para realizar clasificaciones que nos permitan predecir resultados y características, podemos utilizar árboles de decisión. En esta sección aprenderemos cuáles son los casos en los que debemos utilizar estos algoritmos para la toma de decisiones.
    • Machine learning. Clasificación. Naive Bayes (3 horas)
      Al igual que los árboles de decisión, Naive Bayes es una herramienta que nos permite clasificar según ciertas características. Entender las diferencias entre Naive Bayes y los árboles de decisión nos permitirá utilizarlos de forma correcta.

    6. Taller de clientes. Sistemas recomendadores (6 horas)

    En este taller emplearemos la plataforma Azure Matchbox Recommender para realizar sistemas de recomendación de restaurantes y películas.

    7. Inteligencia artificial (6 horas)

    • Inteligencia artificial. Deep learning (3 horas)
      En este apartado se aportará una visión del deep learning aplicado al mundo de la empresa, y se verán las distintas soluciones que componen el deep learning a día de hoy.
    • Inteligencia artificial. Análisis de sentimiento de usuario (3 horas)
      Algunas de las aplicaciones más útiles de la inteligencia artificial hoy día son el análisis de sentimientos, análisis de imágenes o análisis de vídeos. Para ello, utilizaremos los servicios cognitivos de Microsoft.

    8. Taller internet de las cosas y análisis en tiempo real (9 horas)

    En este taller final trabajaremos una visión integral del internet de las cosas y su aplicación para el análisis en tiempo real a través de las redes neuronales.

  • Metodología y Materiales

    Presencial

    Se imparte en la modalidad presencial.

    Telepresencial

    • Clases en streaming en directo. En estas clases el profesor interactúa con el alumno como si de una clase presencial se tratase, pudiendo preguntar dudas y participar en clase.
    • El aula ahora es virtual. Al iniciar el curso, el alumno recibirá unas claves de acceso a nuestro Campus Virtual. Aquí tendrá a su disposición todos los materiales del curso en PDF, sesiones explicativas, un chat o foros donde interactuar con profesores y compañeros o las actividades que realice a lo largo del curso.
    • Equipo docente especializado. Todo el profesorado del CEF.- está familiarizado y especializado en materia de formación online, ya que fuimos pioneros en esta modalidad educativa y hemos ido evolucionando nuestra metodología con el paso de los años.

     

    Material Didáctico

    La documentación que se facilitará para el estudio del curso está elaborada por expertos profesionales en la materia. Su cuidada elaboración y permanente actualización convierten el material de estudio en una valiosa herramienta durante el desarrollo de la acción formativa y su posterior actividad profesional.

  • Precio y calendario

    Calendario presencial

    Sede Fecha de inicio Horario Fecha de fin Duración
    Madrid 4 de marzo de 2025 Martes y jueves, de 19 a 22 h 12 de junio de 2025 81 horas lectivas

    Calendario telepresencial

    Sede Fecha de inicio Horario Fecha de fin Duración
    Telepresencial 4 de marzo de 2025 Martes y jueves, de 19 a 22 h 12 de junio de 2025 81 horas lectivas

    Precios

    Tarifas vigentes para el curso 2024-25.

    15% de descuento para los miembros de la Asociación de Antiguos Alumnos ACEF.- UDIMA*

    Modalidades Pago único Pago fraccionado
    Presencial 1.470 € 4 plazos de 379 €
    Telepresencial 1.470 € 4 plazos de 379 €

    Formas de pago

    Pago único. Se abonará en un solo plazo por domiciliación bancaria, facilitando dichos datos en el momento de formalizar la matrícula.

    Pago fraccionado. Por domiciliación bancaria, facilitando dichos datos en el momento de formalizar la matrícula. El desglose del pago fraccionado es el siguiente:

    Calendario de Plazos

    • Primer pago, en los cinco días hábiles siguientes de la realización de la matrícula.
    • Segundo pago, al inicio del curso.
    • Tercer pago y siguientes, en los cinco primeros días de cada mes correspondiente.

    La forma de pago de honorarios de los alumnos extranjeros tiene su propio procedimiento, que puede consultar en el Departamento de Relaciones Internacionales.

  • Profesorado
    Javier Cabezas. Director de Marketing y Estrategia en CECABANK.
    Javier Cabezas
    Licenciado en Derecho y Empresariales, Javier es MBA por el IE, Master en Tributación por el CEF.- y Doctor en Económicas por la UDIMA, además de haberse formado en marketing en la Universidad de Stanford. Tras trabajar en Accenture, pasó a ocupar el cargo de Director de Estrategia y de Marketing de la Confederación Española de Cajas de Ahorros, cargo que compagina con la pertenencia al consejo asesor de varias empresas.
    José Antonio Esteban Sánchez. CEO EN IRONÍA FINTECH.
    José Antonio Esteban Sánchez
    Ingeniero informático por la Universidad Politécnica de Madrid y alumni del Programa de Alta Dirección de ESADE, José Antonio fue jefe de Nuevas Tecnologías de Continente, actual Carrefour, desde donde pasó a ejercer la dirección técnica de proyectos en consultoras tecnológicas hasta su llegada a Codere, donde fue el responsable del desarrollo tecnológico del producto de Apuestas Deportivas en las distintas compañías que forman el grupo. En la actualidad, es el CEO de Ironía Fintech, start-up que libera la forma de gestionar los fondos de inversión.
    Santiago Hernández y Hernández. CEO de Puromarketing.
    Santiago Hernández y Hernández
    Licenciado en Publicidad por la Universidad Complutense de Madrid, Santiago ha realizado el Máster en Dirección Comercial y Marketing y el MBA en el CEF.- A lo largo de su carrera, ha trabajado para marcas como Garnier, Springfield, LG, Endesa o Peugeot, y tras ser el responsable de marketing digital del Grupo CEF.- UDIMA, pasó a asumir la jefatura de estudios del área de Marketing y Dirección de Empresas, cargo que compagina con su labor de CEO de Puromarketing. Además, es ganador del Premio de Estudios Financieros en la categoría de Marketing y Publicidad y del Talentos Marketing Peugeot.